On linear ordinary differential equations with exponential coefficients
نویسندگان
چکیده
منابع مشابه
Study on usage of Elzaki transform for the ordinary differential equations with non-constant coefficients
Although Elzaki transform is stronger than Sumudu and Laplace transforms to solve the ordinary differential equations withnon-constant coefficients, but this method does not lead to finding the answer of some differential equations. In this paper, a method is introduced to find that a differential equation by Elzaki transform can be solved?
متن کاملA Uniqueness Result on Ordinary Differential Equations with Singular Coefficients
We consider the uniqueness of solutions of ordinary differential equations where the coefficients may have singularities. We derive upper bounds on the order of singularities of the coefficients and provide examples to illustrate the results. 1. Results and examples Classical results on the existence and uniqueness of ordinary differential equations are mostly concerned with continuous coeffici...
متن کاملExponential-Krylov methods for ordinary differential equations
This paper develops a new class of exponential-type integrators where all the matrix exponentiations are performed in a single Krylov space of low dimension. The new family, called Lightly Implicit KrylovExponential (LIKE), is well suited for solving large scale systems of ODEs or semi-discrete PDEs. The time discretization and the Krylov space approximation are treated as a single computationa...
متن کاملOn Global Non-oscillation of Linear Ordinary Differential Equations with Polynomial Coefficients
Based on a new explicit upper bound for the number of zeros of exponential polynomials in a horizontal strip, we obtain a uniform upper bound for the number of zeros of solutions to an ordinary differential equation near its Fuchsian singular point, provided that any two distinct characteristic exponents at this point have distinct real parts. The latter result implies that a Fuchsian different...
متن کاملNon-Schlesinger Deformations of Ordinary Differential Equations with Rational Coefficients
We consider deformations of 2×2 and 3×3 matrix linear ODEs with rational coefficients with respect to singular points of Fuchsian type which don’t satisfy the wellknown system of Schlesinger equations (or its natural generalization). Some general statements concerning reducibility of such deformations for 2× 2 ODEs are proved. An explicit example of the general non-Schlesinger deformation of 2×...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Quarterly of Applied Mathematics
سال: 1968
ISSN: 0033-569X,1552-4485
DOI: 10.1090/qam/235211